Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6062, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480760

RESUMO

With the large increase in human marine activity, our seas have become populated with vessels that can be overheard from distances of even 20 km. Prior investigations showed that such a dense presence of vessels impacts the behaviour of marine animals, and in particular dolphins. While previous explorations were based on a linear observation for changes in the features of dolphin whistles, in this work we examine non-linear responses of bottlenose dolphins (Tursiops Truncatus) to the presence of vessels. We explored the response of dolphins to vessels by continuously recording acoustic data using two long-term acoustic recorders deployed near a shipping lane and a dolphin habitat in Eilat, Israel. Using deep learning methods we detected a large number of 50,000 whistles, which were clustered to associate whistle traces and to characterize their features to discriminate vocalizations of dolphins: both structure and quantities. Using a non-linear classifier, the whistles were categorized into two classes representing the presence or absence of a nearby vessel. Although our database does not show linear observable change in the features of the whistles, we obtained true positive and true negative rates exceeding 90% accuracy on separate, left-out test sets. We argue that this success in classification serves as a statistical proof for a non-linear response of dolphins to the presence of vessels.


Assuntos
Golfinho Nariz-de-Garrafa , Vocalização Animal , Animais , Humanos , Vocalização Animal/fisiologia , Golfinho Nariz-de-Garrafa/fisiologia , Acústica , Oceanos e Mares , Navios , Espectrografia do Som
2.
Biology (Basel) ; 12(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759619

RESUMO

Bio-invasions have the potential to provoke cascade effects that can disrupt natural ecosystems and cause ecological regime shifts. The Mediterranean Sea is particularly prone to bio-invasions as the changing water conditions, evoked by climate change, are creating advantageous conditions for Lessepsian migrants from the Red Sea. Recently, in May 2023, a new alien species was documented in the Mediterranean Sea-a soft coral of the genus Dendronephthya. This discovery was made by divers conducting 'Long-Term Ecological Research' surveys, along the coast of Israel, at a depth of 42 m. Genetic and morphological testing suggest that the species identity may be Dendronepthya hemprichi, an Indo-Pacific coral, common in the Red Sea. According to life history traits of this species, such as accelerated attachment to available surfaces and fast growth, we expect it to rapidly expand its distribution and abundance across the Mediterranean Sea.

3.
Biology (Basel) ; 12(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829603

RESUMO

Along the Mediterranean coast of Israel, two near-shore dolphin species are prevalent; Tursiops truncatus (least concern, IUCN) and Delphinus delphis (endangered, IUCN). Ship-board surveys and sporadic sightings over the last two decades have shown that the two differ in distribution-T. truncatus is found along the entire coast and D. delphis only in the south. The environmental and anthropological factors affecting these species' spatial distribution and determining their habitat preferences in this area are largely unknown. This work is a first attempt at summarizing 20 years of observations and studying habitat preferences for both species, by use of Generalized Additive Models. T. truncatus was found to be present in all areas of the continental shelf where survey effort coverage was sufficient, with a high affinity towards bottom trawlers. Model results showed D. delphis distribution to be associated to (shallow) water depths, though the factors driving their limited latitudinal distribution currently remain unknown. It is evident that T. truncatus and D. delphis are present in segregated areas of the Israeli continental shelf and T. truncatus currently sustains a delicate balance with continuously shifting human activities, while the drivers of D. delphis distribution are more specified, yet still not fully understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...